\(\int \frac {\cos (a+b \sqrt {c+d x})}{x^2} \, dx\) [94]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 184 \[ \int \frac {\cos \left (a+b \sqrt {c+d x}\right )}{x^2} \, dx=-\frac {\cos \left (a+b \sqrt {c+d x}\right )}{x}+\frac {b d \operatorname {CosIntegral}\left (b \left (\sqrt {c}+\sqrt {c+d x}\right )\right ) \sin \left (a-b \sqrt {c}\right )}{2 \sqrt {c}}-\frac {b d \operatorname {CosIntegral}\left (b \sqrt {c}-b \sqrt {c+d x}\right ) \sin \left (a+b \sqrt {c}\right )}{2 \sqrt {c}}+\frac {b d \cos \left (a-b \sqrt {c}\right ) \text {Si}\left (b \left (\sqrt {c}+\sqrt {c+d x}\right )\right )}{2 \sqrt {c}}+\frac {b d \cos \left (a+b \sqrt {c}\right ) \text {Si}\left (b \sqrt {c}-b \sqrt {c+d x}\right )}{2 \sqrt {c}} \]

[Out]

-cos(a+b*(d*x+c)^(1/2))/x+1/2*b*d*cos(a-b*c^(1/2))*Si(b*(c^(1/2)+(d*x+c)^(1/2)))/c^(1/2)+1/2*b*d*cos(a+b*c^(1/
2))*Si(b*c^(1/2)-b*(d*x+c)^(1/2))/c^(1/2)+1/2*b*d*Ci(b*(c^(1/2)+(d*x+c)^(1/2)))*sin(a-b*c^(1/2))/c^(1/2)-1/2*b
*d*Ci(b*c^(1/2)-b*(d*x+c)^(1/2))*sin(a+b*c^(1/2))/c^(1/2)

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3513, 3423, 3414, 3384, 3380, 3383} \[ \int \frac {\cos \left (a+b \sqrt {c+d x}\right )}{x^2} \, dx=\frac {b d \sin \left (a-b \sqrt {c}\right ) \operatorname {CosIntegral}\left (b \left (\sqrt {c}+\sqrt {c+d x}\right )\right )}{2 \sqrt {c}}-\frac {b d \sin \left (a+b \sqrt {c}\right ) \operatorname {CosIntegral}\left (b \sqrt {c}-b \sqrt {c+d x}\right )}{2 \sqrt {c}}+\frac {b d \cos \left (a-b \sqrt {c}\right ) \text {Si}\left (b \left (\sqrt {c}+\sqrt {c+d x}\right )\right )}{2 \sqrt {c}}+\frac {b d \cos \left (a+b \sqrt {c}\right ) \text {Si}\left (b \sqrt {c}-b \sqrt {c+d x}\right )}{2 \sqrt {c}}-\frac {\cos \left (a+b \sqrt {c+d x}\right )}{x} \]

[In]

Int[Cos[a + b*Sqrt[c + d*x]]/x^2,x]

[Out]

-(Cos[a + b*Sqrt[c + d*x]]/x) + (b*d*CosIntegral[b*(Sqrt[c] + Sqrt[c + d*x])]*Sin[a - b*Sqrt[c]])/(2*Sqrt[c])
- (b*d*CosIntegral[b*Sqrt[c] - b*Sqrt[c + d*x]]*Sin[a + b*Sqrt[c]])/(2*Sqrt[c]) + (b*d*Cos[a - b*Sqrt[c]]*SinI
ntegral[b*(Sqrt[c] + Sqrt[c + d*x])])/(2*Sqrt[c]) + (b*d*Cos[a + b*Sqrt[c]]*SinIntegral[b*Sqrt[c] - b*Sqrt[c +
 d*x]])/(2*Sqrt[c])

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sin[c + d*x], (a +
 b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1])

Rule 3423

Int[Cos[(c_.) + (d_.)*(x_)]*((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[e^m*(a + b*x^n
)^(p + 1)*(Cos[c + d*x]/(b*n*(p + 1))), x] + Dist[d*(e^m/(b*n*(p + 1))), Int[(a + b*x^n)^(p + 1)*Sin[c + d*x],
 x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, -1] && EqQ[m, n - 1] && (IntegerQ[n] || GtQ[e, 0])

Rule 3513

Int[((a_.) + Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)]*(b_.))^(p_.)*((g_.) + (h_.)*(x_))^(m_.), x_Symbol] :
> Dist[1/(n*f), Subst[Int[ExpandIntegrand[(a + b*Cos[c + d*x])^p, x^(1/n - 1)*(g - e*(h/f) + h*(x^(1/n)/f))^m,
 x], x], x, (e + f*x)^n], x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IGtQ[p, 0] && IntegerQ[1/n]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \text {Subst}\left (\int \frac {x \cos (a+b x)}{\left (-\frac {c}{d}+\frac {x^2}{d}\right )^2} \, dx,x,\sqrt {c+d x}\right )}{d} \\ & = -\frac {\cos \left (a+b \sqrt {c+d x}\right )}{x}-b \text {Subst}\left (\int \frac {\sin (a+b x)}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x}\right ) \\ & = -\frac {\cos \left (a+b \sqrt {c+d x}\right )}{x}-b \text {Subst}\left (\int \left (-\frac {d \sin (a+b x)}{2 \sqrt {c} \left (\sqrt {c}-x\right )}-\frac {d \sin (a+b x)}{2 \sqrt {c} \left (\sqrt {c}+x\right )}\right ) \, dx,x,\sqrt {c+d x}\right ) \\ & = -\frac {\cos \left (a+b \sqrt {c+d x}\right )}{x}+\frac {(b d) \text {Subst}\left (\int \frac {\sin (a+b x)}{\sqrt {c}-x} \, dx,x,\sqrt {c+d x}\right )}{2 \sqrt {c}}+\frac {(b d) \text {Subst}\left (\int \frac {\sin (a+b x)}{\sqrt {c}+x} \, dx,x,\sqrt {c+d x}\right )}{2 \sqrt {c}} \\ & = -\frac {\cos \left (a+b \sqrt {c+d x}\right )}{x}+\frac {\left (b d \cos \left (a-b \sqrt {c}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (b \sqrt {c}+b x\right )}{\sqrt {c}+x} \, dx,x,\sqrt {c+d x}\right )}{2 \sqrt {c}}-\frac {\left (b d \cos \left (a+b \sqrt {c}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (b \sqrt {c}-b x\right )}{\sqrt {c}-x} \, dx,x,\sqrt {c+d x}\right )}{2 \sqrt {c}}+\frac {\left (b d \sin \left (a-b \sqrt {c}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (b \sqrt {c}+b x\right )}{\sqrt {c}+x} \, dx,x,\sqrt {c+d x}\right )}{2 \sqrt {c}}+\frac {\left (b d \sin \left (a+b \sqrt {c}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (b \sqrt {c}-b x\right )}{\sqrt {c}-x} \, dx,x,\sqrt {c+d x}\right )}{2 \sqrt {c}} \\ & = -\frac {\cos \left (a+b \sqrt {c+d x}\right )}{x}+\frac {b d \operatorname {CosIntegral}\left (b \left (\sqrt {c}+\sqrt {c+d x}\right )\right ) \sin \left (a-b \sqrt {c}\right )}{2 \sqrt {c}}-\frac {b d \operatorname {CosIntegral}\left (b \sqrt {c}-b \sqrt {c+d x}\right ) \sin \left (a+b \sqrt {c}\right )}{2 \sqrt {c}}+\frac {b d \cos \left (a-b \sqrt {c}\right ) \text {Si}\left (b \left (\sqrt {c}+\sqrt {c+d x}\right )\right )}{2 \sqrt {c}}+\frac {b d \cos \left (a+b \sqrt {c}\right ) \text {Si}\left (b \sqrt {c}-b \sqrt {c+d x}\right )}{2 \sqrt {c}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.38 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.30 \[ \int \frac {\cos \left (a+b \sqrt {c+d x}\right )}{x^2} \, dx=\frac {i \left (e^{-i a} \left (2 i \sqrt {c} e^{-i b \sqrt {c+d x}}-b d e^{-i b \sqrt {c}} x \operatorname {ExpIntegralEi}\left (-i b \left (-\sqrt {c}+\sqrt {c+d x}\right )\right )+b d e^{i b \sqrt {c}} x \operatorname {ExpIntegralEi}\left (-i b \left (\sqrt {c}+\sqrt {c+d x}\right )\right )\right )+e^{i \left (a-b \sqrt {c}\right )} \left (2 i \sqrt {c} e^{i b \left (\sqrt {c}+\sqrt {c+d x}\right )}+b d e^{2 i b \sqrt {c}} x \operatorname {ExpIntegralEi}\left (i b \left (-\sqrt {c}+\sqrt {c+d x}\right )\right )-b d x \operatorname {ExpIntegralEi}\left (i b \left (\sqrt {c}+\sqrt {c+d x}\right )\right )\right )\right )}{4 \sqrt {c} x} \]

[In]

Integrate[Cos[a + b*Sqrt[c + d*x]]/x^2,x]

[Out]

((I/4)*((((2*I)*Sqrt[c])/E^(I*b*Sqrt[c + d*x]) - (b*d*x*ExpIntegralEi[(-I)*b*(-Sqrt[c] + Sqrt[c + d*x])])/E^(I
*b*Sqrt[c]) + b*d*E^(I*b*Sqrt[c])*x*ExpIntegralEi[(-I)*b*(Sqrt[c] + Sqrt[c + d*x])])/E^(I*a) + E^(I*(a - b*Sqr
t[c]))*((2*I)*Sqrt[c]*E^(I*b*(Sqrt[c] + Sqrt[c + d*x])) + b*d*E^((2*I)*b*Sqrt[c])*x*ExpIntegralEi[I*b*(-Sqrt[c
] + Sqrt[c + d*x])] - b*d*x*ExpIntegralEi[I*b*(Sqrt[c] + Sqrt[c + d*x])])))/(Sqrt[c]*x)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(713\) vs. \(2(142)=284\).

Time = 1.34 (sec) , antiderivative size = 714, normalized size of antiderivative = 3.88

method result size
derivativedivides \(\frac {2 d \left (\frac {\cos \left (a +b \sqrt {d x +c}\right ) \left (-\frac {a \,b^{2} \left (a +b \sqrt {d x +c}\right )}{2 c}+\frac {b^{2} \left (-b^{2} c +a^{2}\right )}{2 c}\right )}{-b^{2} c +a^{2}-2 \left (a +b \sqrt {d x +c}\right ) a +\left (a +b \sqrt {d x +c}\right )^{2}}-\frac {a b \left (\operatorname {Si}\left (b \sqrt {c}-b \sqrt {d x +c}\right ) \sin \left (a +b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}-b \sqrt {c}\right ) \cos \left (a +b \sqrt {c}\right )\right )}{4 c^{\frac {3}{2}}}+\frac {a b \left (-\operatorname {Si}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \sin \left (a -b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \cos \left (a -b \sqrt {c}\right )\right )}{4 c^{\frac {3}{2}}}+\frac {b \left (-b^{2} c +a^{2}-\left (a +b \sqrt {c}\right ) a \right ) \left (-\operatorname {Si}\left (b \sqrt {c}-b \sqrt {d x +c}\right ) \cos \left (a +b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}-b \sqrt {c}\right ) \sin \left (a +b \sqrt {c}\right )\right )}{4 c^{\frac {3}{2}}}-\frac {b \left (-b^{2} c +a^{2}-\left (a -b \sqrt {c}\right ) a \right ) \left (\operatorname {Si}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \cos \left (a -b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \sin \left (a -b \sqrt {c}\right )\right )}{4 c^{\frac {3}{2}}}-a \,b^{4} \left (\frac {\cos \left (a +b \sqrt {d x +c}\right ) \left (-\frac {a +b \sqrt {d x +c}}{2 c \,b^{2}}+\frac {a}{2 c \,b^{2}}\right )}{-b^{2} c +a^{2}-2 \left (a +b \sqrt {d x +c}\right ) a +\left (a +b \sqrt {d x +c}\right )^{2}}-\frac {\operatorname {Si}\left (b \sqrt {c}-b \sqrt {d x +c}\right ) \sin \left (a +b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}-b \sqrt {c}\right ) \cos \left (a +b \sqrt {c}\right )}{4 c^{\frac {3}{2}} b^{3}}+\frac {-\operatorname {Si}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \sin \left (a -b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \cos \left (a -b \sqrt {c}\right )}{4 c^{\frac {3}{2}} b^{3}}-\frac {-\operatorname {Si}\left (b \sqrt {c}-b \sqrt {d x +c}\right ) \cos \left (a +b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}-b \sqrt {c}\right ) \sin \left (a +b \sqrt {c}\right )}{4 c \,b^{2}}-\frac {\operatorname {Si}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \cos \left (a -b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \sin \left (a -b \sqrt {c}\right )}{4 c \,b^{2}}\right )\right )}{b^{2}}\) \(714\)
default \(\frac {2 d \left (\frac {\cos \left (a +b \sqrt {d x +c}\right ) \left (-\frac {a \,b^{2} \left (a +b \sqrt {d x +c}\right )}{2 c}+\frac {b^{2} \left (-b^{2} c +a^{2}\right )}{2 c}\right )}{-b^{2} c +a^{2}-2 \left (a +b \sqrt {d x +c}\right ) a +\left (a +b \sqrt {d x +c}\right )^{2}}-\frac {a b \left (\operatorname {Si}\left (b \sqrt {c}-b \sqrt {d x +c}\right ) \sin \left (a +b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}-b \sqrt {c}\right ) \cos \left (a +b \sqrt {c}\right )\right )}{4 c^{\frac {3}{2}}}+\frac {a b \left (-\operatorname {Si}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \sin \left (a -b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \cos \left (a -b \sqrt {c}\right )\right )}{4 c^{\frac {3}{2}}}+\frac {b \left (-b^{2} c +a^{2}-\left (a +b \sqrt {c}\right ) a \right ) \left (-\operatorname {Si}\left (b \sqrt {c}-b \sqrt {d x +c}\right ) \cos \left (a +b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}-b \sqrt {c}\right ) \sin \left (a +b \sqrt {c}\right )\right )}{4 c^{\frac {3}{2}}}-\frac {b \left (-b^{2} c +a^{2}-\left (a -b \sqrt {c}\right ) a \right ) \left (\operatorname {Si}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \cos \left (a -b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \sin \left (a -b \sqrt {c}\right )\right )}{4 c^{\frac {3}{2}}}-a \,b^{4} \left (\frac {\cos \left (a +b \sqrt {d x +c}\right ) \left (-\frac {a +b \sqrt {d x +c}}{2 c \,b^{2}}+\frac {a}{2 c \,b^{2}}\right )}{-b^{2} c +a^{2}-2 \left (a +b \sqrt {d x +c}\right ) a +\left (a +b \sqrt {d x +c}\right )^{2}}-\frac {\operatorname {Si}\left (b \sqrt {c}-b \sqrt {d x +c}\right ) \sin \left (a +b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}-b \sqrt {c}\right ) \cos \left (a +b \sqrt {c}\right )}{4 c^{\frac {3}{2}} b^{3}}+\frac {-\operatorname {Si}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \sin \left (a -b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \cos \left (a -b \sqrt {c}\right )}{4 c^{\frac {3}{2}} b^{3}}-\frac {-\operatorname {Si}\left (b \sqrt {c}-b \sqrt {d x +c}\right ) \cos \left (a +b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}-b \sqrt {c}\right ) \sin \left (a +b \sqrt {c}\right )}{4 c \,b^{2}}-\frac {\operatorname {Si}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \cos \left (a -b \sqrt {c}\right )+\operatorname {Ci}\left (b \sqrt {d x +c}+b \sqrt {c}\right ) \sin \left (a -b \sqrt {c}\right )}{4 c \,b^{2}}\right )\right )}{b^{2}}\) \(714\)

[In]

int(cos(a+b*(d*x+c)^(1/2))/x^2,x,method=_RETURNVERBOSE)

[Out]

2*d/b^2*(cos(a+b*(d*x+c)^(1/2))*(-1/2*a*b^2/c*(a+b*(d*x+c)^(1/2))+1/2*b^2*(-b^2*c+a^2)/c)/(-b^2*c+a^2-2*(a+b*(
d*x+c)^(1/2))*a+(a+b*(d*x+c)^(1/2))^2)-1/4*a*b/c^(3/2)*(Si(b*c^(1/2)-b*(d*x+c)^(1/2))*sin(a+b*c^(1/2))+Ci(b*(d
*x+c)^(1/2)-b*c^(1/2))*cos(a+b*c^(1/2)))+1/4*a*b/c^(3/2)*(-Si(b*(d*x+c)^(1/2)+b*c^(1/2))*sin(a-b*c^(1/2))+Ci(b
*(d*x+c)^(1/2)+b*c^(1/2))*cos(a-b*c^(1/2)))+1/4*b*(-b^2*c+a^2-(a+b*c^(1/2))*a)/c^(3/2)*(-Si(b*c^(1/2)-b*(d*x+c
)^(1/2))*cos(a+b*c^(1/2))+Ci(b*(d*x+c)^(1/2)-b*c^(1/2))*sin(a+b*c^(1/2)))-1/4*b*(-b^2*c+a^2-(a-b*c^(1/2))*a)/c
^(3/2)*(Si(b*(d*x+c)^(1/2)+b*c^(1/2))*cos(a-b*c^(1/2))+Ci(b*(d*x+c)^(1/2)+b*c^(1/2))*sin(a-b*c^(1/2)))-a*b^4*(
cos(a+b*(d*x+c)^(1/2))*(-1/2/c/b^2*(a+b*(d*x+c)^(1/2))+1/2*a/c/b^2)/(-b^2*c+a^2-2*(a+b*(d*x+c)^(1/2))*a+(a+b*(
d*x+c)^(1/2))^2)-1/4/c^(3/2)/b^3*(Si(b*c^(1/2)-b*(d*x+c)^(1/2))*sin(a+b*c^(1/2))+Ci(b*(d*x+c)^(1/2)-b*c^(1/2))
*cos(a+b*c^(1/2)))+1/4/c^(3/2)/b^3*(-Si(b*(d*x+c)^(1/2)+b*c^(1/2))*sin(a-b*c^(1/2))+Ci(b*(d*x+c)^(1/2)+b*c^(1/
2))*cos(a-b*c^(1/2)))-1/4/c/b^2*(-Si(b*c^(1/2)-b*(d*x+c)^(1/2))*cos(a+b*c^(1/2))+Ci(b*(d*x+c)^(1/2)-b*c^(1/2))
*sin(a+b*c^(1/2)))-1/4/c/b^2*(Si(b*(d*x+c)^(1/2)+b*c^(1/2))*cos(a-b*c^(1/2))+Ci(b*(d*x+c)^(1/2)+b*c^(1/2))*sin
(a-b*c^(1/2)))))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.33 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.14 \[ \int \frac {\cos \left (a+b \sqrt {c+d x}\right )}{x^2} \, dx=\frac {\sqrt {-b^{2} c} d x {\rm Ei}\left (i \, \sqrt {d x + c} b - \sqrt {-b^{2} c}\right ) e^{\left (i \, a + \sqrt {-b^{2} c}\right )} - \sqrt {-b^{2} c} d x {\rm Ei}\left (i \, \sqrt {d x + c} b + \sqrt {-b^{2} c}\right ) e^{\left (i \, a - \sqrt {-b^{2} c}\right )} + \sqrt {-b^{2} c} d x {\rm Ei}\left (-i \, \sqrt {d x + c} b - \sqrt {-b^{2} c}\right ) e^{\left (-i \, a + \sqrt {-b^{2} c}\right )} - \sqrt {-b^{2} c} d x {\rm Ei}\left (-i \, \sqrt {d x + c} b + \sqrt {-b^{2} c}\right ) e^{\left (-i \, a - \sqrt {-b^{2} c}\right )} - 4 \, c \cos \left (\sqrt {d x + c} b + a\right )}{4 \, c x} \]

[In]

integrate(cos(a+b*(d*x+c)^(1/2))/x^2,x, algorithm="fricas")

[Out]

1/4*(sqrt(-b^2*c)*d*x*Ei(I*sqrt(d*x + c)*b - sqrt(-b^2*c))*e^(I*a + sqrt(-b^2*c)) - sqrt(-b^2*c)*d*x*Ei(I*sqrt
(d*x + c)*b + sqrt(-b^2*c))*e^(I*a - sqrt(-b^2*c)) + sqrt(-b^2*c)*d*x*Ei(-I*sqrt(d*x + c)*b - sqrt(-b^2*c))*e^
(-I*a + sqrt(-b^2*c)) - sqrt(-b^2*c)*d*x*Ei(-I*sqrt(d*x + c)*b + sqrt(-b^2*c))*e^(-I*a - sqrt(-b^2*c)) - 4*c*c
os(sqrt(d*x + c)*b + a))/(c*x)

Sympy [F]

\[ \int \frac {\cos \left (a+b \sqrt {c+d x}\right )}{x^2} \, dx=\int \frac {\cos {\left (a + b \sqrt {c + d x} \right )}}{x^{2}}\, dx \]

[In]

integrate(cos(a+b*(d*x+c)**(1/2))/x**2,x)

[Out]

Integral(cos(a + b*sqrt(c + d*x))/x**2, x)

Maxima [F]

\[ \int \frac {\cos \left (a+b \sqrt {c+d x}\right )}{x^2} \, dx=\int { \frac {\cos \left (\sqrt {d x + c} b + a\right )}{x^{2}} \,d x } \]

[In]

integrate(cos(a+b*(d*x+c)^(1/2))/x^2,x, algorithm="maxima")

[Out]

integrate(cos(sqrt(d*x + c)*b + a)/x^2, x)

Giac [F]

\[ \int \frac {\cos \left (a+b \sqrt {c+d x}\right )}{x^2} \, dx=\int { \frac {\cos \left (\sqrt {d x + c} b + a\right )}{x^{2}} \,d x } \]

[In]

integrate(cos(a+b*(d*x+c)^(1/2))/x^2,x, algorithm="giac")

[Out]

integrate(cos(sqrt(d*x + c)*b + a)/x^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos \left (a+b \sqrt {c+d x}\right )}{x^2} \, dx=\int \frac {\cos \left (a+b\,\sqrt {c+d\,x}\right )}{x^2} \,d x \]

[In]

int(cos(a + b*(c + d*x)^(1/2))/x^2,x)

[Out]

int(cos(a + b*(c + d*x)^(1/2))/x^2, x)